تخمین تبخیر و تعرق مرجع روزانه به کمک مدل درخت تصمیمM5 و شبکه عصبی مصنوعی

Authors

Abstract:

تعیین دقیق آب مصرفی گیاه باعث افزایش راندمان آبیاری و بهبود مدیریت آب در مزرعه را دنبال دارد. تبخیر و تعرق یک از اجزای اصلی چرخه­ی هیدرولوژی محسوب می­شود و برآورد دقیق آن در مدیریت منابع آب نقش اساسی دارد. در این تحقیق به ارزیابی مدل درختی  M5  و مدل شبکه­ی عصبی تحت شرایط مختلف حداقل داده­ی اقلیمی در یک منطقه­ی خشک سرد پرداخته شد. داده­های مورد استفاده در این تحقیق شامل دمای حداقل و حداکثر، رطوبت نسبی میانگین، سرعت باد در ارتفاع دو متری و ساعات آفتابی از ایستگاه هواشناسی فرخشهر بین سال­های 2013-2004 می باشند. برای ارزیابی مدل­ها از مدل پنمن مونتیث فائو استفاده گردید. مدل شبکه عصبی یک شبکه پیشخور با الگوریتم آموزشی لونبرگ مارکوات و تابع لوگ سیگموئید در لایه پنهان و تابع خطی در لایه خروجی می­باشد. در بین سناریوهای مورد بررسی، سناریو یک با تمام متغیرهای ورودی کمترین خطا باRMSE=0.3422  برای شبکه عصبی و   RMSE=.3611 برای مدل درختی M5 بهترین عملکرد را داشت. نتایج نشان داد اگرچه مدل شبکه عصبی دقت بهتری نسبت به مدل درختیM5 دارد ولی مدل درختی روابط ساده، خطی و قابل فهم­تری را ارائه می­کند. بنابراین این تحقیق مدل درختی را برای برآورد تبخیر و تعرق در این منطقه توصیه می­کند.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

بهبود دقت روش هارگریوز در برآورد تبخیر- تعرق مرجع به کمک ضریب اصلاحی با مدل شبکه عصبی مصنوعی و درخت تصمیم M5

تبخیر- تعرق یکی از مهم ترین اجزای چرخه هیدرولوژی است که مدلسازی آن در مدیریت منابع آب نقش مهمی دارد. در تحقیق حاضر امکان بهبود دقت برآورد تبخیر- تعرق روش هارگریوز به کمک ضریب اصلاحیK با استفاده از مدل شبکه عصبی مصنوعی و مدل درخت تصمیم M5 مورد بررسی قرار گرفت. این ضریب برابر با نسبت تبخیر- تعرق مدل پنمن مونتیث فائو به روش هارگریوز می باشد. داده های مورد استفاده این تحقیق عبارت از دمای حداکثر و ح...

full text

کاربرد تلفیقی شبکه عصبی و روش های محاسباتی جهت تخمین دقیق تر تبخیر-تعرق مرجع

در بسیاری از مسائل آبیاری و زهکشی، هیدرولوژی، محیط زیستی، فرسایش خاک و منابع آب تخمین دقیق تر تبخیر-تعرق اهمیت زیادی دارد. استفاده از شبکه عصبی مصنوعی یکی از روش های تخمین تبخیر-تعرق مرجع می‌باشد. تاکنون در بیشتر مقالات منتشر شده داده های اقلیمی به عنوان ورودی شبکه عصبی جهت تخمین تبخیر-تعرق مرجع مورد استفاده قرار گرفته است. در این تحقیق از تبخیر-تعرق محاسبه شده بوسیله روش های محاسباتی هارگریوز ...

full text

مقایسه روش‌های سری زمانی و شبکه عصبی مصنوعی در پیش‌بینی تبخیر-تعرق مرجع (مطالعه موردی: ارومیه)

     تبخیر-تعرق یکیازمؤلفه­هایمهمدرمصرفمنابعآب در بخش کشاورزیمی­باشد. لذا ارائه روشی که پیش­بینی مناسب و دقیقی از میزان تبخیر-تعرق مرجع را بدهد، می­تواند در اخذتصمیم­ بهینهبرایبرنامه­ریزی منابع آب کمککند. دراینتحقیق،روش­های سری زمانی و شبکه­های عصبی مصنوعی درپیش­بینیتبخیر-تعرق مرجع ماهانهدرایستگاهسینوپتیک ارومیهموردمقایسه قرار گرفتند. بدین منظور در گام نخست بهترین مدل سری زمانی از بین مدل­های A...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 2  issue 3

pages  35- 44

publication date 2016-11

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023